DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that utilizes reinforcement learning to boost thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential differentiating feature is its support learning (RL) action, which was used to fine-tune the model's reactions beyond the standard pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately enhancing both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's equipped to break down and factor through them in a detailed manner. This guided thinking procedure allows the design to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation design that can be incorporated into various workflows such as representatives, logical thinking and information interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, making it possible for efficient reasoning by routing questions to the most appropriate expert "clusters." This technique permits the design to specialize in various issue domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to imitate the behavior and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and evaluate designs against crucial security criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, create a limitation boost demand and reach out to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Establish consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid damaging material, and assess designs against essential safety criteria. You can implement precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general circulation includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.
The model detail page offers vital details about the design's capabilities, rates structure, and execution guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code snippets for integration. The design supports various text generation jobs, consisting of material production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT thinking capabilities.
The page likewise includes deployment choices and licensing details to help you begin with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of instances, go into a variety of circumstances (in between 1-100).
6. For example type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure advanced security and infrastructure settings, setiathome.berkeley.edu consisting of virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For many use cases, the default settings will work well. However, for production releases, you may want to evaluate these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive interface where you can experiment with different triggers and change design parameters like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, material for inference.
This is an exceptional method to explore the model's reasoning and text generation abilities before incorporating it into your applications. The play ground supplies immediate feedback, helping you understand how the design reacts to various inputs and letting you fine-tune your prompts for optimum results.
You can rapidly check the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a demand to generate text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 convenient techniques: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you pick the method that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser displays available designs, with details like the provider name and design capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each design card reveals essential details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design
5. Choose the design card to see the model details page.
The model details page includes the following details:
- The design name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you deploy the design, it's suggested to review the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, utilize the automatically created name or produce a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the variety of circumstances (default: 1). Selecting suitable instance types and counts is crucial for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to deploy the design.
The deployment process can take several minutes to complete.
When release is complete, your endpoint status will alter to InService. At this moment, the design is ready to accept reasoning requests through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To avoid unwanted charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases. - In the Managed releases area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious options using AWS services and sped up compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the inference performance of big language models. In his downtime, Vivek takes pleasure in hiking, seeing motion pictures, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building options that help consumers accelerate their AI journey and unlock company value.